This article was downloaded by: On: *16 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

To cite this Article Singh, Gurdip and Pandey, Durgesh Kumar(2002) 'Kinetics and mechanism of thermolysis of hexammine metal perchlorates', Journal of Energetic Materials, 20: 2, 135 – 152 To link to this Article: DOI: 10.1080/07370650208244817 URL: http://dx.doi.org/10.1080/07370650208244817

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

KINETICS AND MECHANISM OF THERMOLYSIS OF HEXAMMINE METAL PERCHLORATES

Gurdip Singh* and Durgesh Kumar Pandey Chemistry Department D.D.U. Gorakhpur University Gorakhpur-273 009, India.

ABSTRACT

The thermal decomposition studies on four transition metal hexammine perchlorates, viz. $[Cu(NH_3)_6](ClO_4)_2$, $[Co(NH_3)_6](ClO_4)_2$, $[Ni(NH_3)_6](ClO_4)_2$ and $[Zn(NH_3)_6](ClO_4)_2$, have been carried out using Thermogravimetry (TG), derivative thermogravimetry (DTG) and explosion delay (D_E) measurements. Although, the kinetics of thermolysis of these complexes were evaluated by fitting isothermal TG data in nine mechanism-based kinetic models but the contracting area (n=2) and contracting cube (n=3) give the best fits. It has been observed that deammination takes place at lower temperatures and ammine metal perchlorates and/or metal perchlorates are formed as intermediates which decompose to metal oxides at higher temperatures. The decomposition pathways for hexammine metal perchlorates have also been suggested.

Journal of Energetic Materials Vol. 20, 135-152 (2002) Published in 2002 by Dowden, Brodman & Devine, Inc.

INTRODUCTION

As a part of our ongoing research programme to understand the mechanism of thermolysis of energetic materials,¹⁻¹¹ we have reported the preparation and characterisation of hexammine metal perchlorates (HAMPs) in our earlier paper.¹² Studies on thermolysis of these complexes are quite meagre.¹³⁻¹⁵ The kinetic data are of practical interest for a number of technologically important processes.¹⁶⁻¹⁸ Thermoanalytical techniques can provide the measurement of overall (global) kinetic parameter of thermally stimulated reactions which permit a deeper insight into the mechanism of decomposition of highly energetic compounds. Thus, it was planned to carry out the thermolysis of HAMP complexes using TG, DTG and explosion delay measurements. The kinetic parameters have been evaluated and plausible pathways for their decomposition have also been proposed in this communication.

EXPERIMENTAL

The preparation of four HAMP complexes, namely $[Cu(NH_3)_6](ClO_4)_2$, $[Co(NH_3)_6](ClO_4)_2$, $[Ni(NH_3)_6](ClO_4)_2$ and $[Zn(NH_3)_6](ClO_4)_2$ have already been reported.¹² The detailed thermolysis of these complexes has been investigated as follows: Non-isothermal TG

TG studies on these HAMP complexes (wt.20mg, 100-200 mesh) were undertaken in static air at a heating rate of 2°C/min using indigenously fabricated TG Apparatus¹⁹ fitted with temperature indicator-cum-controller (Model CT 808T, Century). Bucket type platinum crucible (h=1cm & d=1cm) was used as sample holder. The plots of percent decomposition (α) vs temperature (°C) are given in Figure 1. Simultaneous TG-DTG thermograms on HAMP complexes were obtained on a Mettler Toledo Star system in nitrogen atmosphere (flow rate 50 cm³/min) at a heating rate of 10°C/min and thermograms are given in Figure 2. TG and DTG data profiles are summerised in Table 1.

Isothermal TG

The isothermal TG on these complexes (wt. 20mg, 100-200 mesh) were carried out in static air using the same apparatus as mentioned above at appropriate temperatures. The percent decomposition (α) vs time (min) plots are given in Figure 3. The kinetics of thermal decomposition have been evaluated from isothermal TG data which were fitted in nine mechanism-based kinetic models.^{20,21} Contracting area and contracting cube equations (Equations 1 & 2) have been found to give best fits (Figures 4 & 5).

> $1 - (1 - \alpha)^{1/2} = kt.....(1)$ $1 - (1 - \alpha)^{1/3} = kt....(2)$

The Arrhenius plots are given in Figures. 6 & 7. The correlation coefficient values (r) were also evaluated using the relation:

Correlation coefficient (r) =
$$\frac{\sum xy}{\sqrt{(\sum x^2)(\sum y^2)}}$$
(3)

where x and y are values at abscissa and ordinates, respectively. The calculated values for rate constants (k), E_a and r are reported in Table 2.

Explosion Delay (D_E) and Explosion Temperature (ET) Measurements

These studies were undertaken using tube furnace (TF) technique²² as reported earlier¹¹. The sample (wt. 20 mg, 100-200 mesh) was taken in an ignition tube (l=5 cm &

d=0.4 cm) and time interval between the insertion of the ignition tube into the TF and the moment of an audible explosion, noted with the help of a stop watch, gave the value of explosion delay (D_E) in seconds (s). The time taken for insertion of the ignition tube was also kept constant throughout the measurements. The accuracy of temperature measurement of TF was $\pm 1^{\circ}$ C. Each run was repeated three times and mean D_E values are reported in Table 3. The explosion temperatures (ET) were taken of D_E at 30 s to have a comparison between the relative thermal stability of the four complexes and data are reported in Table 3. D_E data were found to fit in the following equation²³⁻²⁵

 $1/D_{\rm E} = {\rm Ae}^{{\rm E}^{*}/{\rm R}{\rm T}}$ (4)

where E^* is the activation energy for explosion and T is the absolute temperature. Typical plots of log D_E vs 1/T are given in Figure 8.

RESULTS AND DISCUSSION

It is evident from TG sigmoidal curves presented in Figure 1 that all these complexes show mass loss (α) up to 75-80%. TG-DTG data (Table 1, Figure 2) show that these complexes undergo decomposition in two stages. Partial deammination takes place at lower temperatures prior to exothermic decomposition of ammine metal perchlorates (formed as intermediates) to their respective metal oxides. However, complete deammination was observed in the case of copper complex. The overall decomposition temperature range has been found in order:

 $[Zn(NH_3)_6](ClO_4)_2 > [Ni(NH_3)_6](ClO_4)_2 > [Cu(NH_3)_6](ClO_4)_2 > [Co(NH_3)_6](ClO_4)_2 > [Ni(NH_3)_6](ClO_4)_2 > [Ni($

Thus, it is clear that cobalt complex is very sensitive towards heat and zinc complex is stable at considerable higher temperatures. Dynamic TG plots reported in Figure 1 are

consistent with this trend. The decomposition pathways for these complexes can be proposed as follows which are based on TG and DTG results reported in Table 1:

$$[Cu(NH_{3})_{6}](ClO_{4})_{2} \xrightarrow{207-243^{0}C} Cu(ClO_{4})_{2} \xrightarrow{257-310^{0}C} CuO$$

$$[Co(NH_{3})_{6}](ClO_{4})_{2} \xrightarrow{180-214^{0}C} [Co(NH_{3})_{3}](ClO_{4})_{2} \xrightarrow{214-270^{0}C} CoO$$

$$[Ni(NH_{3})_{6}](ClO_{4})_{2} \xrightarrow{217-265^{\circ}C} [Ni(NH_{3})_{2}](ClO_{4})_{2} \xrightarrow{270-325^{\circ}C} NiO$$

$$[Zn(NH_3)_6](ClO_4)_2 \xrightarrow{269-290^{\circ}C} [Zn(NH_3)_3](ClO_4)_2 \xrightarrow{352-383^{\circ}C} ZnO$$

The kinetics of thermal decomposition of these HAMPs were evaluated using nine mechanism-based kinetic models out of which contracting area (CA) and contracting cube (CC) equations were found to fit in TG data. Estimated kinetic parameters and correlation coefficients (r) are reported in Table 2. The values of E_a obtained from both CA and CC equations for all the complexes are almost the same. However, copper and cobalt complexes gave the same E_a values which is lower as compared to those of nickel and zinc complexes. However, E_a of these complexes was found in the order:

 $[Cu(NH_3)_6](ClO_4)_2 \approx [Co(NH_3)_6](ClO_4)_2 < [Ni(NH_3)_6](ClO_4)_2 < [Zn(NH_3)_6](ClO_4)_2 < [Ni(NH_3)_6](ClO_4)_2 < [Ni($

These complexes are stable at room temperature and explode when subjected to a sudden high temperatures. Thus, it was deemed to be of interest to undertake explosion delay measurements (Table 3). Copper and cobalt complexes gave the lower value of D_E whereas zinc complex did not explode at furnace temperatures up to and exceeding 400°C. ET and E* for copper and cobalt complexes are found to be similar in both the cases and are quite low as compared to zinc complex. These values also support the TG data reported in Table 2.

Summerising these results it can be concluded that thermal decomposition of HAMP complexes involve deammination prior to decomposition yielding corresponding metal oxides as final decomposition product. Copper and cobalt complexes are less thermally stable than those with nickel and zinc.

ACKNOWLEDGEMENTS

Thanks are due to ISRO, Bangalore for financial assistance and Head, Chemistry Department, DDU Gorakhpur University, Gorakhpur for laboratory facility.

REFERENCES

- 1. G. Singh and I.P.S. Kapoor, J. Phys. Chem., <u>96</u>, 1215 (1992).
- 2. G. Singh and I.P.S. Kapoor, Combust. Flame, <u>92</u>, 283 (1993).
- G. Singh, I.P.S. Kapoor, S. Mudi Mannan and J. P. Agrawal, Combust. Flame, <u>97</u>, 355 (1994).
- 4. G. Singh, R.R. Singh, A.P. Rai and I.P.S. Kapoor, J. Therm. Anal., <u>36</u>, 253 (1990).
- 5. G. Singh, I.P.S. Kapoor and S. Mudi Mannan, Thermochim. Acta, 262, 117 (1995).
- 6. G. Singh, I.P.S. Kapoor and S. Mudi Mannan, J. Energ. Mater., 13, 141 (1995).
- 7. G. Singh, I.P.S. Kapoor and S. K. Tiwari, Indian J. Chem. Tech., 7, 236 (2000).
- G. Singh, I.P.S. Kapoor, S.K. Tiwari and S.P. Felix, Indian J. Engg. Mater. Sc., <u>7</u>, 167 (2000).
- 9. G. Singh, I.P.S. Kapoor and S. Jacob, Indian J. Engg. and Mater. Sc. 5, 140 (1998).
- 10. G. Singh, I.P.S. Kapoor and S. Mudi Mannan, J. Energ. Mater., 12, 123 (1994).
- G. Singh, I.P.S. Kapoor, S. Mudi Mannan and S.K. Tiwari, J. Energ. Mater., <u>16</u>, 101 (1998).
- 12. G. Singh, I.P.S. Kapoor and D.K. Pandey, J. Energ. Mater., (2001) (communicated).
- 13. K.C. Patil and E.A. Secco, Can. J. Chem., 49, 3831 (1971).
- 14. K.C. Patil and V.R. Pai Verneker, Thermochim. Acta, 15, 257 (1976).
- 15. J. E. House, K.A. Kemper and H.M. Fogel, Thermochim. Acta, <u>129</u>, 263 (1988).
- 16. T.B. Brill and K.J. James, Chem. Rev., 93, 2667 (1993).
- J.H. Peperzho, in "Thermal Analysis in Metallurgy", ed. R.D. Schull, A. Joshi, (P.A. Warrendale), <u>121</u> (1992).
- 18. D. Dollimore, Anal Chem., <u>68</u>, 63R (1996).

- 19. G. Singh and R.R. Singh, Res. Ind. 23, 92 (1978).
- 20. V. Satava, Thermochim. Acta, 2, 423 (1971).
- 21. C.M. Wyandt and D.R. Flanagan, Thermochim. Acta, 196, 379 (1992).
- 22. G. Singh, I.P.S. Kapoor and S.K. Vasudeva, Indian J. Tech., 29, 589(1991).
- N. Semenov, "Chemical Kinetics and Chain Reactions", Clerendon Press, Oxford (1935).
- 24. E.S. Freeman and S. Gordon, J. Phys. Chem., 60, 867 (1956).
- 25. J. Zinn and R.N. Rogers, J. Phys. Chem., 66, 2646 (1962).

Downloaded At: 13:49 16 January 2011

TABLE 1

TG-DTG Data Profile on Hexammine Metal Perchlorates

N N	Decomposition mode	DTC Dag	L Tampara	(J ₀)erit	of Mo	ee loee
		Onset	Ts	Endset	Obs.	Cal.
_: 	[Cu(NH ₃) ₆](ClO ₄) ₂					
	Loss of 6NH ₃	207	213	243	25.8	27.9
	Decomposition of Cu(ClO ₄) ₂	257	298	310	54.2	50.3
2.	[Co(NH ₃) ₆](ClO ₄) ₂					
	Loss of 3 NH ₃	180	200	214	13.5	14.2
	Decomposition of [Co(NH ₃) ₃](ClO ₄) ₂	214	236	270	63.9	65.0
ч.	[Ni(NH ₃) ₆](CIO ₄) ₂					
	Loss of 4 NH ₃	217	244	265	17.6	18.8
	Decomposition of [Ni(NH ₃) ₂](ClO ₄) ₂	270	288	325	59.5	60.4
4.	[Zn(NH ₃) ₆](ClO ₄) ₂					
	Loss of 3 NH ₃	269	278	290	12.5	13.9
	Decomposition of [Zn(NH ₃) ₃](ClO ₄) ₂	352	370	383	64.5	64.1

Downloaded At: 13:49 16 January 2011

Kinetic Parameters and Correlation Coefficients (r) for Isothermal Decomposition of HAMP Complexes **TABLE 2**

Comp.			S	tracting a	irea (n=2)					Cer	itracting cu	be (n=3)		
No.	Rai	te Constan	ts (k.10 ⁻³ /n	nin.) st (]	(K)	-	Ea/LJ mole		Rate Consta	ints (k.10 ⁻³ /i	min) at (T/)		-	Ea/kJmole
<u> </u>	5.1	ų.ñ	12.2	24.0	55.1	0.9987	63.8	6.5	1.6	12.0	23.5	55.0	0.9896	63.5
	(1223)	(573)	(E83)	(665)	(613)			(553)	(573)	(583)	(263)	(613)		
6	5.7	6.5	8.9	16.5	32.2	0.9965	64.5	5.6	6.9	10.0	22.4	30.3	0.9923	64.8
	(1993)	(633)	(563)	((:13)	(665)			(533)	(533)	(263)	(573)	(1:65)		
r;	(.)	8.5	2	35	38.1	0.9833	71.6	7.2	7.8	12.9	28.0	35.4	0.9922	71.2
	(633)	(633)	((()))	(169)	(617)			(633)	(623)	(663)	(693)	(511)		
Ŧ	4.1	5.7	0.9	15.8	25.9	0.9975	80.6	5.0	4.8	12.9	20.1	32.5	0.9891	79.8
	(613)	((143)	(623)	((())	(663)			(613)	(643)	(623)	(673)	(663)		

TABLE 3

Explosion Delay (DE), Explosion Temperature (ET) and Activation Energy (Ea) of HAMP Complexes

	mole ⁻¹)	34.9	35.3	36.6	45.4
10	کا الا				
ET(°C)	Dr. of M	399	402	911	537
	475	29.0±2	28.5±I	31.1±1	125.0±2
	450	32.1±1	29.3±3	36.0±0	145.5±1
±(°C)	425	35.0±1	34.1±l	42.0±1	235.1±1
	00 ŧ	EF0:14	38.0±2	45.3±2	DNE
peratures	375	44.0±2	40.3±1	48.5±3	DNE
various ten	350	21.0±2	65.I±2	50.4±I	DNE
DE (s) at	325	60.8±3	75.0±3	105.0±2	DNE
	300	69.2±1	90.041	115.2±2	DNE
	275	143±0	120.0±1	175.0±0	DNE
	250	180 1 3	150.0±2	240.5±1	DNE
Comp.	Nu.	-	2	e,	4.

DNE = Did not explode

FIGURE 1 Nonisothermal TG Thermograms of HAMP Complexes

FIGURE 2 TG-DTG Thermograms of HAMP Complexes

FIGURE 3 Isothermal Decomposition of HAMP Complexes

147

FIGURE 4 Kinetic Analysis of HAMP Complexes by the Contracting area equation (n=2)

148

FIGURE 5 Kinetic Analysis of HAMP Complexes by the Contracting cube equation (n=3)

149

FIGURE 6 Arrhenius Plots of HAMP Complexes for Contracting area equation (n=2)

150

FIGURE 7 Arrhenius Plots of HAMP Complexes for Contracting cube equation (n=3)

FIGURE 8 Plots of log D_E vs 1/T (⁰K) for HAMP Complexes